Система автоматизированного проектирования и расчета
+7 (499) 922  00  02

Перспективы развития систем сейсмоизоляции современных зданий и сооружений

4 Сентября 2014
  • Джинчвелашвили Г.А., канд. техн. наук, доцент,
  • Колесников А.В., аспирант
  • (Кафедра сопротивления материалов МГСУ, Москва),
  • Заалишвили В.Б., д-р физ.-матем. наук, профессор,
  • Годустов И.С., ст. научн. сотрудник

Центр геофизических исследований ВНЦ РАН и РСО-А, Владикавказ

На конкретных примерах произведены нелинейные расчеты систем сейсмоизоляции. Отмечается так же важность пересмотра действующих нормативных документов и методов расчета зданий и сооружений на сейсмические воздействия.

1. Введение

На современном этапе проблема защиты зданий и сооружений от сейсмических воздействий является задачей первостепенной важности. Актуальность исследований в этом направлении в свете недавних разрушительных землетрясений, а также ускоренного развития инфраструктуры сейсмоактивных районов Дальнего Востока, Байкала, Краснодарского Края, Северного Кавказа, очевидна. Инженерный анализ последствий катастрофических землетрясений позволяет сделать важные выводы для получения новых данных и ведет к пересмотру действующих нормативных документов. Приведем некоторые примеры фрагментарно:

  • Спитакское землетрясение (Армения, 1988 г.). В сейсмически опасных районах здания с гибким I этажом и чисто каркасные здания (без диафрагм жесткости) строить нельзя. Высокая сейсмостойкость крупнопанельных зданий. Несовершенство СНиП II-7‑81 и карт ОСР;
  • Кобе (Япония, 1995 г.). Почти полное повторение картины землетрясения в Ниигата (Япония, 1964 г.) — разжижение грунтов и значительный крен зданий, без существенных разрушений;
  • Турция (1998 г.). Многочисленные разрушения торцовых частей зданий из-за неравномерности поля колебаний грунта под фундаментом здания (эффект кручения).

Сейсмостойкость каркасных зданий повышается постановкой диафрагм жесткости. При проектировании протяженных зданий надо учитывать неравномерные по длине горизонтальные нагрузки в плоскости перекрытий, иными словами РДМ (расчетная динамическая модель) сооружения и воздействия должна быть пространственной. После этого произошло еще несколько катастрофических землетрясений (Япония, 2002г.; Китай, 2008 г.; Италия, 2009 г.; Индонезия, 2009 г.).
Какие же шаги были предприняты для учета печального опыта?
Нормы СНГ — внедрение (они являются рекомендуемыми, но не обязательными) пространственных методов расчета. На их основании пересмотрены нормы Украины, Казахстана, Узбекистана, Армении, Грузии.

Украина — внедрение в СНиП пространственных методов расчета, пересмотр ОСР территории, обязательные расчеты ответственных сооружений на синтезированные акселерограммы (они нормированы по типам грунтов и зданий).

Армения — сейсмичность площадки нормируется ускорением, учет грунтовых условий в явном виде, внедрение в нормы систем сейсмоизоляции в виде резинометаллических опор.

Для расчета зданий и сооружений, проектируемых в странах Евросоюза, приняты нормы Eurocode-8, в которых внедрены пространственные методы расчета и многое другое.

Россия — «косметический ремонт» СНиП II-7‑81*, не пересмотрено ничего принципиального, актуализация норм практически провалена. Из опыта последних землетрясений почти не делается никаких выводов.

Все сложнее проектировать современные здания и сооружения в районах с повышенной сейсмичностью, в условиях, когда:

  1. качество нормативных документов ненадлежащее;
  2. фактически свернуты научные исследования в свете поиска новых конструктивных форм и систем сейсмозащиты.

Поэтому новизна исследований в направлении поиска надежных систем сейсмоизоляции (вопреки нормативным документам), также очевидна.

2. Системы сейсмозащиты

Традиционный способ обеспечения сейсмостойкости сооружений предусматривает повышение несущей способности основных конструктивных элементов за счет увеличения их размеров и прочности. Такой вид сейсмозащиты называется пассивным. Применение элементов пассивной сейсмозащиты приводит к увеличению сечений конструктивных элементов, что в свою очередь приводит к увеличению жесткости и веса сооружения. Это вызывает возрастание инерционной (сейсмической) нагрузки, и, следовательно, чтобы воспринять ее, следует еще раз пересмотреть размеры сечений несущих конструкций. Процесс этот, в конце концов, может и не привести к повышению сейсмостойкости сооружения. Примеров тому — масса.

Другой способ повышения сейсмостойкости, который неоднократно обсуждался среди проектировщиков еще в 60‑е годы (хотя в принципе применялся еще с древних времен), условно был назван активной сейсмозащитой, или сейсмоизоляцией [1]. В активной сейсмозащите, в отличие от простого наращивания прочности зданий с большим расходом материалов при пассивной сейсмозащите, используется либо адаптация к внешнему воздействию, либо искусственное повышение демпфирования, либо антирезонансное гашение колебаний, либо создание условий изоляции здания от сейсмических колебаний грунта.

Сейсмоизоляция, как новое научное направление, не имеет единой методологии научно-технического обоснования, позволяющего делать объективные выводы по полезности того или иного решения и, соответственно, о его целесообразности [2, 3, 4].

В нашей стране и за рубежом предложено и разработано большое количество систем активной сейсмозащиты зданий. Отдельные из этих систем получили практическое воплощение на отдельных объектах, это позволило оценить их технологичность для строительного производства. На многих объектах проведены вибрационные испытания, что позволило получить экспериментальные данные о поведении этих систем при динамических воздействиях. Однако по существу все разработанные системы нуждаются в дополнительных исследованиях преимущественно в натурных условиях, так как многие стороны реального поведения систем сейсмозащиты трудно исследовать теоретически или на моделях из-за весьма большого количества факторов, влияющих на поведение сооружения при интенсивном землетрясении. Широкое внедрение систем активной сейсмозащиты в настоящее время сдерживается практически полным отсутствием данных о реальном поведении таких систем при сильных землетрясениях.

Тем не менее, внедрение систем сейсмозащиты в экспериментальном строительстве следует продолжать и расширять по двум основным причинам.

Во-первых, только в процессе строительства можно достоверно оценить технологичность каждой системы сейсмозащиты, получить данные о технико-экономических показателях, которые, в конечном счете, могут оказаться решающими при выборе той или иной системы сейсмозащиты. Во-вторых, уже сейчас на основании существующего опыта теоретических и экспериментальных исследований можно выделить ряд перспективных для сейсмостойкого строительства систем сейсмозащиты.

В ЦГИ РАН проводятся исследования по усовершенствованию уже известных систем с кинематическими опорами, упругой или гравитационной возвращающей силой и диссипативными демпферными элементами [5‑8] (рис.1).

Целью настоящих исследований является поиск усовершенствованных систем для понижения энерговосприятия всем спектром собственных колебаний здания ниже предела значений энергий, передаваемых диапазоном ускорений сейсмического воздействия.

Сейсмоизоляция подразделяется на следующие классификационные подгруппы:

  • здания с грунтовым экранированием;
  • здания со скользящими фундаментными сейсмопоясами;
  • здания с гибким первым этажом;
  • здания с гибкостержневыми опорами или поясами;
  • здания с подвесными опорами;
  • здания с резинометаллическими или иными виброизолирующими опорами;
  • здания с гидрофрикционными опорами;
  • здания с кинематическими (чаще всего катковыми) опорами.

В любой из этих подгрупп, кроме первых двух, сейсмоизоляция может дополнительно включать в себя средства повышенного демпфирования колебаний. При сейсмоизоляции опорные части зданий могут двигаться, колеблясь относительно грунта со своей сниженной амплитудой, а спектр собственных колебаний здания может быть выведен далеко за пределы обычно встречающихся спектров землетрясений.

Система сейсмоизоляции наиболее перспективна и, оправдывая своё название, изолирует здание от колебаний грунта за счёт использования зданием инерции покоя. В этом случае грунт основания под зданием колеблется с наименьшей зависимостью от массы здания за счёт устранения жесткой связи здания с основанием путём замены её на весьма податливую связь, передающую зданию тем меньшую силу от движения грунта, чем более податлива связь грунта со зданием.

В частности, для изоляции здания от горизонтальных колебаний грунта, оно может ставиться на горизонтально скользящие по фундаментной плите опоры или пояса, или катки с малым коэффициентом трения (рис.1).

В настоящей работе ограничимся именно этим видом сейсмоизоляции.

Читать полную версию статьи в формате PDF



Следите за нашими новостями в социальных сетях


Возврат к списку


Материалы по теме:

Цикл вебинаров "Шпаргалки для конструктора". Урок №19: "Расчет опоры рекламного щита"
Конструкция щитов наружной рекламы на первый взгляд представляет собой несложную чаще стальную конструкцию на бетонном постаменте.
25 мая 2017
Цикл вебинаров "Механика конструкций". Тема 5. Теория и практика расчета пластин"
Приглашаем посетить продолжение цикла вебинаров "Механика конструкций". Тема 5, который состоится 8 июня.
23 мая 2017
Новый релиз ПК ЛИРА 10.6 R3.0
Вышел новый релиз ПК ЛИРА 10.6 R3.0. В данном релизе были внесены изменения и исправлены выявленные ошибки.
27 апреля 2017
Время расширяться с ЛИРА софт!
До 16 июня 2017 пользователи ПК ЛИРА 10 получают уникальную возможность приобрести дополнительную лицензию ПК ЛИРА 10.6 со скидкой.
10 апреля 2017
Все новости
Нелинейный статический метод анализа сейсмостойкости зданий и сооружений
Нелинейный статический метод или Pushover Analysis, широко используемый за рубежом, основан на методе спектра несущей способности. В работе подробно описан метода нелинейного статического анализа с учетом возможности использования в отечественной нормативной литературе.
21 ноября 2016
Современные методы расчета зданий и сооружений на сейсмические воздействия в ПК ЛИРА 10.4. Опыт реализации СП 14.13330.2014
Возможности программного комплекса ЛИРА 10.4 для моделирования зданий и сооружений на сейсмические воздействия.
15 октября 2015
Форум "100+ Forum Russia". Приглашаем на наши доклады
23-25 сентября 2015 года в рамках форума "100+ Forum Russia", технический директор ЛИРА софт  Колесников А.В. выступит с рядом докладов - приглашаем принять участие!
27 августа 2015
Геометрически нелинейные задачи после потери устойчивости
Геометрически нелинейные задачи в трехмерной вариационной постановке и шаговый метод для их решения. Применяется безусловно устойчивая неявная разностная схема. Приведены тестовые задачи.
28 апреля 2015
Все публикации


Цикл вебинаров "ПК ЛИРА 10 в задачах". Тема 17. "Задание нагрузок в ПК ЛИРА 10.6"
Продолжительность: 90 минут
Стоимость: Бесплатно


Онлайн-презентация ПК ЛИРА 10.6
Продолжительность: 11:00 - 14:00
Стоимость:


Презентация: ПК ЛИРА 10.6
Продолжительность: 1 день
Стоимость: Бесплатно
Смотреть график
Моделирование и расчет нетиповых узлов и соединений металлических конструкций методом конечных элементов
Вебинар рассчитан на конструкторов, занимающихся проектированием металлических конструкций. Нетиповые узлы необходимо моделировать отдельно и оценивать прочность по напряжениям.
27 апреля 2017
Цикл вебинаров "ПК ЛИРА 10 в задачах". Тема 18. Расчет конструкций зданий и сооружений на температурные воздействия. Задача расчета температурного поля
Уточнение расчета подпорной стенки с помощью ввода абсолютно твердых тел, сбор нагрузок согласно нормативным документам
19 апреля 2017
Цикл вебинаров "Шпаргалки для конструктора". Урок №18: Расчет монолитных подпорных стенок
Из вебинара вы узнаете как производить уточнение расчета подпорной стенки с помощью ввода абсолютно твердых тел, сбор нагрузок согласно нормативным документам.
27 марта 2017
Цикл вебинаров "Механика конструкций". Тема 4. Динамика сооружений
В вебинаре рассматриваются основы динамики сооружений. Рассматриваются простейшие задачи, на примере которых слушатель освоит базовые уравнения динамики и методы их решения.
03 марта 2017
Все записи вебинаров
Создание сайта на Битрикс — AGRWEB