Система автоматизированного проектирования и расчета
+7 (499) 922  00  02

Перспективы развития систем сейсмоизоляции современных зданий и сооружений

4 Сентября 2014
  • Джинчвелашвили Г.А., канд. техн. наук, доцент,
  • Колесников А.В., аспирант
  • (Кафедра сопротивления материалов МГСУ, Москва),
  • Заалишвили В.Б., д-р физ.-матем. наук, профессор,
  • Годустов И.С., ст. научн. сотрудник

Центр геофизических исследований ВНЦ РАН и РСО-А, Владикавказ

На конкретных примерах произведены нелинейные расчеты систем сейсмоизоляции. Отмечается так же важность пересмотра действующих нормативных документов и методов расчета зданий и сооружений на сейсмические воздействия.

1. Введение

На современном этапе проблема защиты зданий и сооружений от сейсмических воздействий является задачей первостепенной важности. Актуальность исследований в этом направлении в свете недавних разрушительных землетрясений, а также ускоренного развития инфраструктуры сейсмоактивных районов Дальнего Востока, Байкала, Краснодарского Края, Северного Кавказа, очевидна. Инженерный анализ последствий катастрофических землетрясений позволяет сделать важные выводы для получения новых данных и ведет к пересмотру действующих нормативных документов. Приведем некоторые примеры фрагментарно:

  • Спитакское землетрясение (Армения, 1988 г.). В сейсмически опасных районах здания с гибким I этажом и чисто каркасные здания (без диафрагм жесткости) строить нельзя. Высокая сейсмостойкость крупнопанельных зданий. Несовершенство СНиП II-7‑81 и карт ОСР;
  • Кобе (Япония, 1995 г.). Почти полное повторение картины землетрясения в Ниигата (Япония, 1964 г.) — разжижение грунтов и значительный крен зданий, без существенных разрушений;
  • Турция (1998 г.). Многочисленные разрушения торцовых частей зданий из-за неравномерности поля колебаний грунта под фундаментом здания (эффект кручения).

Сейсмостойкость каркасных зданий повышается постановкой диафрагм жесткости. При проектировании протяженных зданий надо учитывать неравномерные по длине горизонтальные нагрузки в плоскости перекрытий, иными словами РДМ (расчетная динамическая модель) сооружения и воздействия должна быть пространственной. После этого произошло еще несколько катастрофических землетрясений (Япония, 2002г.; Китай, 2008 г.; Италия, 2009 г.; Индонезия, 2009 г.).
Какие же шаги были предприняты для учета печального опыта?
Нормы СНГ — внедрение (они являются рекомендуемыми, но не обязательными) пространственных методов расчета. На их основании пересмотрены нормы Украины, Казахстана, Узбекистана, Армении, Грузии.

Украина — внедрение в СНиП пространственных методов расчета, пересмотр ОСР территории, обязательные расчеты ответственных сооружений на синтезированные акселерограммы (они нормированы по типам грунтов и зданий).

Армения — сейсмичность площадки нормируется ускорением, учет грунтовых условий в явном виде, внедрение в нормы систем сейсмоизоляции в виде резинометаллических опор.

Для расчета зданий и сооружений, проектируемых в странах Евросоюза, приняты нормы Eurocode-8, в которых внедрены пространственные методы расчета и многое другое.

Россия — «косметический ремонт» СНиП II-7‑81*, не пересмотрено ничего принципиального, актуализация норм практически провалена. Из опыта последних землетрясений почти не делается никаких выводов.

Все сложнее проектировать современные здания и сооружения в районах с повышенной сейсмичностью, в условиях, когда:

  1. качество нормативных документов ненадлежащее;
  2. фактически свернуты научные исследования в свете поиска новых конструктивных форм и систем сейсмозащиты.

Поэтому новизна исследований в направлении поиска надежных систем сейсмоизоляции (вопреки нормативным документам), также очевидна.

2. Системы сейсмозащиты

Традиционный способ обеспечения сейсмостойкости сооружений предусматривает повышение несущей способности основных конструктивных элементов за счет увеличения их размеров и прочности. Такой вид сейсмозащиты называется пассивным. Применение элементов пассивной сейсмозащиты приводит к увеличению сечений конструктивных элементов, что в свою очередь приводит к увеличению жесткости и веса сооружения. Это вызывает возрастание инерционной (сейсмической) нагрузки, и, следовательно, чтобы воспринять ее, следует еще раз пересмотреть размеры сечений несущих конструкций. Процесс этот, в конце концов, может и не привести к повышению сейсмостойкости сооружения. Примеров тому — масса.

Другой способ повышения сейсмостойкости, который неоднократно обсуждался среди проектировщиков еще в 60‑е годы (хотя в принципе применялся еще с древних времен), условно был назван активной сейсмозащитой, или сейсмоизоляцией [1]. В активной сейсмозащите, в отличие от простого наращивания прочности зданий с большим расходом материалов при пассивной сейсмозащите, используется либо адаптация к внешнему воздействию, либо искусственное повышение демпфирования, либо антирезонансное гашение колебаний, либо создание условий изоляции здания от сейсмических колебаний грунта.

Сейсмоизоляция, как новое научное направление, не имеет единой методологии научно-технического обоснования, позволяющего делать объективные выводы по полезности того или иного решения и, соответственно, о его целесообразности [2, 3, 4].

В нашей стране и за рубежом предложено и разработано большое количество систем активной сейсмозащиты зданий. Отдельные из этих систем получили практическое воплощение на отдельных объектах, это позволило оценить их технологичность для строительного производства. На многих объектах проведены вибрационные испытания, что позволило получить экспериментальные данные о поведении этих систем при динамических воздействиях. Однако по существу все разработанные системы нуждаются в дополнительных исследованиях преимущественно в натурных условиях, так как многие стороны реального поведения систем сейсмозащиты трудно исследовать теоретически или на моделях из-за весьма большого количества факторов, влияющих на поведение сооружения при интенсивном землетрясении. Широкое внедрение систем активной сейсмозащиты в настоящее время сдерживается практически полным отсутствием данных о реальном поведении таких систем при сильных землетрясениях.

Тем не менее, внедрение систем сейсмозащиты в экспериментальном строительстве следует продолжать и расширять по двум основным причинам.

Во-первых, только в процессе строительства можно достоверно оценить технологичность каждой системы сейсмозащиты, получить данные о технико-экономических показателях, которые, в конечном счете, могут оказаться решающими при выборе той или иной системы сейсмозащиты. Во-вторых, уже сейчас на основании существующего опыта теоретических и экспериментальных исследований можно выделить ряд перспективных для сейсмостойкого строительства систем сейсмозащиты.

В ЦГИ РАН проводятся исследования по усовершенствованию уже известных систем с кинематическими опорами, упругой или гравитационной возвращающей силой и диссипативными демпферными элементами [5‑8] (рис.1).

Целью настоящих исследований является поиск усовершенствованных систем для понижения энерговосприятия всем спектром собственных колебаний здания ниже предела значений энергий, передаваемых диапазоном ускорений сейсмического воздействия.

Сейсмоизоляция подразделяется на следующие классификационные подгруппы:

  • здания с грунтовым экранированием;
  • здания со скользящими фундаментными сейсмопоясами;
  • здания с гибким первым этажом;
  • здания с гибкостержневыми опорами или поясами;
  • здания с подвесными опорами;
  • здания с резинометаллическими или иными виброизолирующими опорами;
  • здания с гидрофрикционными опорами;
  • здания с кинематическими (чаще всего катковыми) опорами.

В любой из этих подгрупп, кроме первых двух, сейсмоизоляция может дополнительно включать в себя средства повышенного демпфирования колебаний. При сейсмоизоляции опорные части зданий могут двигаться, колеблясь относительно грунта со своей сниженной амплитудой, а спектр собственных колебаний здания может быть выведен далеко за пределы обычно встречающихся спектров землетрясений.

Система сейсмоизоляции наиболее перспективна и, оправдывая своё название, изолирует здание от колебаний грунта за счёт использования зданием инерции покоя. В этом случае грунт основания под зданием колеблется с наименьшей зависимостью от массы здания за счёт устранения жесткой связи здания с основанием путём замены её на весьма податливую связь, передающую зданию тем меньшую силу от движения грунта, чем более податлива связь грунта со зданием.

В частности, для изоляции здания от горизонтальных колебаний грунта, оно может ставиться на горизонтально скользящие по фундаментной плите опоры или пояса, или катки с малым коэффициентом трения (рис.1).

В настоящей работе ограничимся именно этим видом сейсмоизоляции.

Читать полную версию статьи в формате PDF


Скачать дистрибутив ПК ЛИРА 10.6


Следите за нашими новостями в социальных сетях


Возврат к списку


Материалы по теме:

Учебный курс ПК ЛИРА

Подписка

Вы хотите первыми узнавать о выходе новых версий, проводимых мероприятиях и акциях компании? Подписывайтесь!

Подписаться
Международная конференция «Цифровая трансформация строительной отрасли»
Приглашаем вас принять участие в международной конференции «Цифровая трансформация строительной отрасли», которая пройдет 2 и 3 марта в Алматы, Республика Казахстан.
22 февраля 2018
Вебинар: Совместная работа ПК ЛИРА 10 и PLAXIS 3D
Одной из неотъемлемых задач расчёта зданий является взаимодействие сооружения с грунтом основания. Если для простых задач, с точки зрения геологии, этот вопрос решается в рамках расчета коэффициентов постели, то в сложных геотехнических задачах часто приходится прибегать к специализированным программным комплексам
21 февраля 2018
Вебинар: расчет зданий и сооружений на сейсмические воздействия в ПК ЛИРА 10.6. Часть 1
На вебинаре будут рассмотрены основные возможности расчета зданий и сооружений на сейсмические воздействия: линейные и нелинейные методы, спектральный и прямой динамический методы.
14 февраля 2018
Вышли новые релизы ПК ЛИРА 10.4 R5.10 и ПК ЛИРА 10.6 R4.0
Вышли новые релизы ПК ЛИРА 10.4 R5.10 и ПК ЛИРА 10.6 R4.0
12 февраля 2018
Все новости
Оценка точности нелинейного статического метода анализа сейсмостойкости сооружений

В статье рассмотрено практическое применение методики нелинейного статического анализа сейсмостойкости зданий и сооружений. Произведен расчет одноэтажной стальной рамы нелинейным статическим и нелинейным динамическим методами. В результате анализа полученных результатов расчета показана значимость высших форм колебаний и необходимость анализа их влияния на реакцию системы.

06 февраля 2018
Напряженно-деформированное состояние коррозионно - поврежденных железобетонных элементов при динамическом нагружении
С помощью современного программно-вычислительного комплекса  ЛИРА 10.6 выполнена сравнительная оценка напряженно–деформированного состояния  не поврежденного и коррозионно-поврежденного железобетонного элемента при динамическом и статическом нагружении. Проанализировано   влияния ослабленного коррозией бетонного участка сжатой зоны на перераспределение напряжений в сечении.
25 января 2018
Применение технологий BIM при расчете зданий в условиях сложной геотехнической обстановки в связке программ Revit, ЛИРА 10.6 и PLAXIS 3D
В статье рассматривается методика совместной работы ПК ЛИРА 10.6 и PLAXIS 3D посредством API модуля. С позиции инженера-расчетчика рассматриваются возможности передачи моделей между различными программами с применением технологий информационного моделирования.
21 июня 2017
Нелинейный статический метод анализа сейсмостойкости зданий и сооружений
Нелинейный статический метод или Pushover Analysis, широко используемый за рубежом, основан на методе спектра несущей способности. В работе подробно описан метода нелинейного статического анализа с учетом возможности использования в отечественной нормативной литературе.
21 ноября 2016
Все публикации


Цикл вебинаров "ПК ЛИРА 10 в задачах". Тема 17. "Задание нагрузок в ПК ЛИРА 10.6"
Продолжительность: 90 минут
Стоимость: Бесплатно


Онлайн-презентация ПК ЛИРА 10.6
Продолжительность: 11:00 - 14:00
Стоимость:


Презентация: ПК ЛИРА 10.6
Продолжительность: 1 день
Стоимость: Бесплатно
Смотреть график
Расчет зданий и сооружений на сейсмические воздействия в ПК ЛИРА 10.6
23 января прошел онлайн семинар, посвященный проектированию зданий и сооружений в сейсмически активных районах. В рамках семинара обсуждались вопросы, связанные с применением европейских норм Eurocode с учетом национальных приложений Республики Казахстан.
09 февраля 2018
Эффективная интеграция Revit и ПК ЛИРА 10.6
Вебинар будет интересен конструкторам, расчётчикам, проектировщикам, BIM-менеджерам, руководителям конструкторских групп.
01 декабря 2017
Цикл вебинаров "Механика конструкций". Тема 6. Основы расчета тонкостенных стержней
На вебинаре будут рассмотрены основы расчета тонкостенных стержней. Рассмотрим примеры ручного расчета и сравним с расчетом методом конечных элементов, используя ПК ЛИРА 10.6.
26 октября 2017
Цикл вебинаров "ПК ЛИРА 10 в задачах". Тема 21. Применение модуля расчёта упруго-геометрических характеристик
В вебинаре будут рассматриваться использования нового модуля «Определение упруго-геометрических характеристик поперечных сечений стержней», появившегося в ПК ЛИРА 10.6.
28 сентября 2017
Все записи вебинаров
Создание сайта на Битрикс — AGRWEB