

lira-soft.com +7 (499) 922-00-02

Реализация конечных элементов с узлами на сторонах в ПК ЛИРА 10.4

Конечные элементы с узлами на серединах сторон

- Пластины: треугольник, четырехугольник.
- Объемные элементы: тетраэдр, треугольная и четырехугольная призмы.

Реализованы в версии ПК ЛИРА 10.4 R1

Конечные элементы с узлами

на серединах сторон

Конечные элементы линейной статической задачи [1, 2, 3]

порядок производных *m*;

область Ω , занимаемую конечным элементом, и его узлы X_l ;

множество узловых неизвестных;

множество H_и линейных комбинаций базисных функций µ_k или их явный вид.

Обозначим $P_r(\Omega)$ - множество многочленов степени не выше r на Ω ;

 $Q_r(\Omega)$ - множество произведений многочленов степени не выше r по каждой переменной,

Базисные функции:

Треугольник [4]: $H_{\mu} = P_1(\Omega), \tau = 1.$ Базисные функции на Ω_0 имеют вид $\mu_1 = 1 - s_1 - s_2,$ $\mu_2 = s_1, \mu_3 = s_2.$ Треугольник **сузлами в серединах сторон** [3]: $H_{\mu} = P_2(\Omega), \tau = 2.$ Базисные функции на Ω_0 имеют вид $\mu_1 = 1 - 3s_1 - 3s_2 + 2s_1^2 + 4s_1s_2 + 2s_2^2,$ $\mu_2 = -s_1 + 2s_1^2, \mu_3 = -s_2 + 2s_2^2,$ $\mu_4 = 4s_1s_2, \mu_5 = 4s_2 - 4s_1s_2 - 4s_2^2, \mu_6 = 4s_1 - 4s_1s_2 - 4s_1^2.$

1. Сьярле Ф. Метод конечных элементов для эллиптических задач. - М.: Мир, 1980. – 512 с.

2. Карпиловский В.С. Четырехугольный восьмиузловой конечный элемент плиты // Строительная механика и расчет сооружений, 1990. — С. 13-17.

3. Евзеров И.Д. Неконформные конечные элементы для нелинейных уравнений с монотонными операторами// Численные методы механики сплошной среды. –1985. – Т.16. - №5. - С. 49-56.

4. Courant R. Variable methods for the solution of problem of equilibrium and vibration. – Bull. Amer. Math. Soc., 1943, №1.

Конечные элементы с узлами

на серединах сторон

Базисные функции двумерных элементов изгиба (m=2):

Треугольник [1]:

Базисные функции удовлетворяют условиям: $H_{\mu} \supset P_2(\Omega)$, $s_u = 3$, $s_n = 2$, $\tau = 2$.

Конформные функции λ_k , удовлетворяющие (2.28), строятся из (2.32), (2.30) и (2.33), t = 1. Базисные функции на Ω_0 имеют вид

$$\begin{split} & \mu_i = \mu_i^0 + c_{ij} \varphi_j, \text{ где } \quad \mu_1^0 = 1 - 3s_1^2 - 3s_2^2 + 2s_1^3 + 2s_2^3, \quad \mu_2^0 = s_2 - 2s_2^2 - s_1^2 s_2 + s_1^3, \\ & \mu_3^0 = -s_1 + 2s_1^2 - s_1^3 + s_1 s_2^2, \quad \mu_4^0 = 3s_1^2 - 2s_1^3, \quad \mu_5^0 = s_1^2 s_2, \quad \mu_6^0 = s_1^2 - s_1^3, \quad \mu_7^0 = 3s_2^2 - 2s_2^3, \\ & \mu_8^0 = s_2^2 - s_2^3, \quad \mu_9^0 = s_1 s_2^2, \quad \varphi_1 = s_1 s_2 (1 - s_1 - s_2), \quad \varphi_2 = s_1^2 s_2 (1 - s_1 - s_2), \quad \varphi_3 = s_1 s_2^2 (1 - s_1 - s_2), \\ & c_{11} = 6, \quad c_{12} = 12, \quad c_{13} = 12, \quad c_{21} = 1, \quad c_{22} = -4, \quad c_{23} = -2, \quad c_{31} = -1, \quad c_{32} = 2, \quad c_{33} = 4, \\ & c_{41} = -3, \quad c_{42} = 6, \quad c_{43} = 6, \quad c_{51} = -1/2, \quad c_{52} = 1, \quad c_{53} = -1, \quad c_{61} = -3/2, \quad c_{62} = 3, \quad c_{63} = 3, \\ & c_{71} = -3, \quad c_{72} = 6, \quad c_{73} = 6, \quad c_{81} = 3/2, \quad c_{82} = -3, \quad c_{83} = -3, \quad c_{91} = -1/2, \quad c_{92} = 1/2, \quad c_{93} = -1/2. \\ & \text{Треугольник с узлами в серединах сторон [2]:} \\ & P_4(\Omega) \subset H_\mu \subset P_5(\Omega), \quad s_u = 5, \quad s_n = 3, \quad \tau = 2. \text{ KoнфopMhie фyhkulu } \lambda_k, \text{ удовлетворяющие} \\ & (2.28), \text{ строятся из } (2.32), (2.30), \quad t = 1. \end{split}$$

1. Евзеров И.Д. Неконформные конечные элементы для нелинейных уравнений с монотонными операторами// Численные методы механики сплошной среды. –1985. – Т.16. - №5. - С. 49-56.

2. Карпиловский В.С. Методы конструирования конечных элементов. – Киев, 1980.-50 с. - Деп. УкрНИИНТИ 23.06.80, № 2153.

Конечные элементы с узлами на серединах сторон

Четырехугольник:

Базисные функции удовлетворяют условиям: $\mu_k \in P_3(\Omega_q), \ \mu_k \in C^1(\Omega), H_\mu \supset P_2(\Omega), \ \tau = 1.$ Конформные функции λ_k , удовлетворяющие (2.28), строятся из (2.32), (2.30) и (2.33), t = 1.

Четырехугольник с узлами в серединах сторон [2]: Базисные функции удовлетворяют условиям: $\mu_k \in P_5(\Omega_q)$, $\mu_k \in C^2(\Omega)$, $H_\mu \supset P_3(\Omega)$, $\tau = 2$. Конформные функции λ_k , удовлетворяющие (2.28), строятся из (2.32), (2.30) и (2.33), t = 1.

Вычисление базисных функций четырехугольников и двумерных элементов изгиба сводится к решению систем линейных уравнений, которое выполняется программно.

1. Евзеров И.Д. Неконформные конечные элементы для нелинейных уравнений с монотонными операторами// Численные методы механики сплошной среды. –1985. – Т.16. - №5. - С. 49-56.

2. Карпиловский В.С. Треугольный шести узловой элемент плиты // Известия ВУЗов. Строительство и архитектура. -Новосибирск, 1989, №4.-стр.35-39.

Задача устойчивости

Частора (рад/с)		1	2	3	4	5	6
традиционные элементы		18.876	18.534	18.435	18.41	17.733	17.558
высокоточные элементы		17.527	17.504	17.495	17.495	17.491	17.49

Задача динамики

-10 Основные Задача №1 (разбивка 1x2) Тип расчет Полный Оптимизация Автоматически выби Задача №4 (разбивка 4х40) Точность разложения 1e- 7 матрицы жесткости Точность решения 1e- 5 Задача №2 (разбивка 1х10) динамической задачи Использовать многопроцессорный расчет Задача №5 (разбивка 8х80) Использовать 6 степеней свободы в КЭ оболочки Использовать конечные элементы с дополнительными узлами Задача №3 (разбивка 2х20) При успешном расчете выполнять расчет конструкций Запустить расчет Задача №6 (разбивка 16х160) Переходить в результаты после успешного расчета

Использование элементов с узлами на ребрах

12

софт

Задача устойчивости

13

Частота (рад/с)	1	2	3	4	5	6	
традиционные элементы	I	57,684	21,076	18,454	17,719	17,528	17,479
высокоточные элементы		18,42	17,532	17,476	17,466	17,463	17,462

РАЗДЕЛ 7 ПАТОЛОГИЧЕСКИЕ ТЕСТЫ. ВЕРИФИКАЦИЯ ПК ЛИРА.

Y, V

ТЕСТ 7.1 ПРЯМОЛИНЕЙНАЯ КОНСОЛЬНАЯ БАЛКА ПОД ДЕЙСТВИЕМ НА СВОБОДНОМ ТОРЦЕ СОСРЕДОТОЧЕННИХ ПРОДОЛЬНЫХ И ПОПЕРЕЧНЫХ СИЛ И КРУТЯЩЕГО МОМЕНТА

Исходные данные: L=6 м: b=0.1 м: h=0.2 м: Характеристики материала: E= 1×10⁷ кПа, µ=0.3; Граничные условия: Узлы заделки: $\omega = u = v = \theta_z = \theta_y = 0$. Нагрузка:

 P_x =1000 H; P_y =1000 H; M_x =1000 H·M;

X,U 1000 1000 1000 1000 1000 1000 α Y, V 5 X,U 1100 1200 1200 900 800 h Y, V 5 X,U 900 1000 1000 1000 1000 1100 C

Источник: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.

Описание задачи:

<u>Модель 1а, 1b, 1c:</u> Система моделировалась четырёх узловыми конечными элементами типа КЭ 44, количество узлов — 14, количество элементов — 6;

<u>*Модель 2а, 2b, 2c:</u> Система моделировалась четырёх узловыми конечными элементами с узлами на сторонах типа КЭ 44, количество узлов – 14, количество элементов – 6;

<u>Модель За, Зb, Зc:</u> Система моделировалась трёх узловыми конечными элементами типа КЭ 42, количество узлов – 14, количество элементов – 12;

<u>*Модель 4a, 4b, 4c:</u> Система моделировалась трёх узловыми конечными элементами с узлами на сторонах типа КЭ 42, количество узлов – 14, количество элементов – 12; <u>Модель 5a, 5b, 5c:</u> Система моделировалась объёмными восьми узловыми конечными элементами типа КЭ 36, количество узлов – 28, количество элементов – 6; <u>*Модель 6a, 6b, 6c:</u> Система моделировалась объёмными восьми узловыми конечными элементами с узлами на сторонах типа КЭ 36, количество узлов – 28, количество элементов – 6;

<u>Модель 7а, 7b, 7c:</u> Система моделировалась объёмными шести узловыми конечными элементами типа КЭ 34, количество узлов – 28, количество элементов – 12; <u>*Модель 8а, 8b, 8c:</u> Система моделировалась объёмными шести узловыми конечными элементами с узлами на сторонах типа КЭ 34, количество узлов – 28, количество элементов – 12;

* Использование КЭ с узлами на сторонах

софт

Модель	Вид Искомая нагрузки величина		Теория	Результ	Отклонение, %				
				модель а	модель b	модель с	а	b	С
	P _x	u, (10 ⁻⁵ м)	3	2.9863	2.9871	2.9871	0.46	0.43	0.43
4	Py	V, M	0.1080	0.010088	0.002898	0.003685	90.66	97.32	96.59
1	Pz	ω, Μ	-0.4320	-0.426230	-0.425420	-0.425465	1.34	1.52	1.51
	M _x	$ heta_{\mathrm{x}}$, рад	0.02340^	0.022733	0.020509	0.020563	2.85	12.35	12.12
	P _x	u, (10 ⁻⁵ м)	3	3.0046	3.0049	3.0049	0.15	0.16	0.16
2*	Py	V, M	0.1080	0.10579	0.10302	0.10414	2.05	4.61	3.57
2.	Pz	ω, Μ	-0.4320	-0.42761	-0.4278	-0.4278	1.02	0.97	0.97
	M _x	$ heta_x$, рад	0.02340^	0.022813	0.022746	0.022749	2.5	2.79	2.79
	P _x	и, 10 ⁻⁵ м)	3	2.9768	2.9744	2.9791	0.77	0.85	0.70
2	Py	V, M	0.1080	0.003418	0.001615	0.002404	96.84	98.5	97.77
3	Pz	ω, Μ	-0.4320	-0.421265	-0.42107	-0.42172	2.49	2.62	2.38
	M _x	$ heta_x$, рад	0.02340^	0.018560	0.018771	0.019384	20.68	19.78	17.16
	P _x	u, (10 ⁻⁵ м)	3	3.0093	3.0071	3.0118	0.31	0.24	0.39
л *	Py	V, M	0.1080	0.10627	0.10388	0.1049	1.6	3.81	2.87
4	Pz	ω, Μ	-0.4320	-0.426575	-0.426035	-0.42695	1.26	1.38	1.17
	M _x	$ heta_{x}$, рад	0.02340^	0.023023	0.022994	0.02305	1.61	1.74	1.5
ЛИРА		* 14							

* Использование КЭ с узлами на сторонах

οφт С

Модель	Вид Искомая нагрузки величина		Теория	Результ	Отклонение, %				
				модель а	модель b	модель с	а	b	С
	P _x	и, (10 ⁻⁵ м)	3	2.9568	2.9576	2.9575	1.44	1.41	1.42
-	Py	V, M	0.1080	0.01043	0.002764	0.003409	90.34	97.44	96.84
σ	Pz	ω, Μ	-0.4320	-0.010882	-0.004516	-0.006154	97.48	98.95	98.58
	M _x	$ heta_{x}$, рад	0.034109	0.02682	0.01617	0.01103	21.37	52.59	67.66
	P _x	и, (10 ⁻⁵ м)	3	3.0017	3.0023	3.0024	0.057	0.077	0.08
<u> </u>	Py	V, M	0.1080	0.10488	0.095738	0.10453	2.89	11.35	3.21
0"	Pz	ω, Μ	-0.4320	-0.41511	-0.39735	-0.40671	3.91	8.02	5.85
	M _x	$ heta_x$, рад	0.034109	0.029017	0.029013	0.02901	14.93	14.94	14.95
	P _x	и, (10 ⁻⁵ м)	3	2.9497	2.9501	2.94845	1.68	1.66	1.72
7	Py	V, M	0.1080	0.003362	0.001616	0.002129	96.89	98.50	98.03
/	Pz	ω, Μ	-0.4320	-0.01106	-0.00511	-0.00590	97.44	98.82	98.63
	M _x	$ heta_x$, рад	0.034109	0.002479	0.004106	0.006401	92.73	87.96	81.23
	P _x	u, (10 ⁻⁵ м)	3	3.0032	3.0002	3.0077	0.11	0.01	0.26
0*	Py	V, M	0.1080	0.10467	0.10241	0.10315	3.08	5.18	4.49
0.	Pz	ω, Μ	-0.4320	-0.4149	-0.41013	-0.40987	3.96	5.06	5.12
	M _x	$ heta_x$, рад	0.034109	0.028970	0.029018	0.028964	15.07	14.93	15.08
ЛИРА	k l								

* Использование КЭ с узлами на сторонах

РАЗДЕЛ 7 ПАТОЛОГИЧЕСКИЕ ТЕСТЫ. ВЕРИФИКАЦИЯ ПК ЛИРА.

ТЕСТ 7.7 СКРУЧЕННАЯ КОНСОЛЬНАЯ БАЛКА ПОД ДЕЙСТВИЕМ НА СВОБОДНОМ ТОРЦЕ СОСРЕДОТОЧЕННЫХ ПОПЕРЕЧНЫХ СИЛ

Исходные данные:

L=12.0 м, b=1.1 м, t=0.32 м; α= $\pi/2$ – угол скручивания продольной оси балки;

Характеристики материала:

E= 2.9×10⁷ кПа, µ=0.22;

<u>Граничные условия:</u>

Все узлы заделки: $\omega = u = v = \theta_z = \theta_x = \theta_v = 0$.

Нагрузка:

 P_{v} =1 кH, P_{z} =1 кH;

Описание задачи:

<u>Модель 1(2*):</u> Система моделировалась трёх узловыми конечными элементами типа КЭ 42

Модель 3 (4*): Система моделировалась трёх узловыми конечными элементами типа КЭ 46,

Модель 5 (6*): Система моделировалась объёмными четырёх узловыми конечными элементами типа КЭ 32

Источник: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.

Tecm 7.7

Модель	Нагрузка	Искомая величина	Теория	Результаты расчёта Лира 10.4	Отклонение, %
1	Py	Смещение свободного торца – <i>v</i> , м	0.001754	0.0014639	16.54
1	Pz	Смещение свободного торца – ω, м	0.005424	0.0053137	2.03
) *	Py	Смещение свободного торца – <i>v</i> , м	0.001754	0.0017499	0.23
2	P_z	Смещение свободного торца – ω, м	0.005424	0.0053882	0.66
2	Py	Смещение свободного торца – <i>v</i> , м	0.001754	0.0015579	12.59
3	Pz	Смещение свободного торца – ω, м	0.005424	0.0056613	4.19
л*	Py	Смещение свободного торца – <i>v</i> , м	0.001754	0.0019523	11.31
+	Pz	Смещение свободного торца – ω, м	0.005424	0.0061075	12.60
5	Py	Смещение свободного торца – <i>v</i> , м	0.001754	0.000253	95.34
5	P _z	Смещение свободного торца – ω, м	0.005424	0.000321	94.08
c *	Py	Смещение свободного торца – <i>v</i> , м	0.001754	0.0017627	0.50
0	P _z	Смещение свободного торца – ω, м	0.005424	0.0053949	0.54
	ира офт * Исполь	зование КЭ с узла	ми на сторонах		

РАЗДЕЛ 7 ПАТОЛОГИЧЕСКИЕ ТЕСТЫ. ВЕРИФИКАЦИЯ ПК ЛИРА.

ТЕСТ 7.14 ОТКРЫТАЯ ЦИЛИНДРИЧЕСКАЯ ОБОЛОЧКА ПРЯМОУГОЛЬНАЯ В ПЛАНЕ И СВОБОДНО ОПЁРТАЯ ПО КРИВОЛИНЕЙНЫМ КРОМКАМ

Исходные данные:

R=25.0 м – радиус серединной поверхности цилиндрической оболочки;

L=50.0 м – длина образующей цилиндрической оболочки;

2φ=2×40° – центральный угол дуги;

h = 0.25 м – *толщина оболочки;*

<u>Характеристики материала:</u>

E= 4.32×10⁸ кПа, *μ*=0.0;

Граничные условия:

Наложение связей по условиям симметрии

Πο дуге; ω = v = 0;

<u>Нагрузка:</u>

q=90 kH/м – равномерно распределённая сила по всей поверхности цилиндрической оболочки;

Источник: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20; A. C. Scordelis, K. S. Lo, Computer analysis of cylindrical shells, Journal of the American concrete institute, Title No 61-33, May 1964, p. 539-561.Design of cylindrical concrete shell roofs, New York, Manual No 31 American society of civil engineers, 1952.

Рассматривается расчётная схема четверти цилиндрической оболочки по условиям симметрии.

<u>Модель 1(2*)</u>: Система моделировалась трёх узловыми конечными элементами типа КЭ 42 с регулярной сеткой 4х4, 8х8, 16х16. Количество узлов — 25, 81, 289. Количество элементов — 32, 128, 512;

<u>Модель 3(4*):</u> Система моделировалась четырёх узловыми конечными элементами типа КЭ 44 с регулярной сеткой 4x4, 8x8, 16x16. Количество узлов — 25, 81, 289. Количество элементов — 16, 64, 256;

<u>Модель 5(6*):</u> Система моделировалась объёмными шести узловыми конечными элементами типа КЭ 34 с регулярной сеткой 4х4, 8х8, 16х16. Количество узлов – 20, 162, 578. Количество элементов – 32, 128, 512;

<u>Модель 7(8*):</u> Система моделировалась объёмными восьми узловыми конечными элементами типа КЭ 36 с регулярной сеткой 4х4, 8х8, 16х16. Количество узлов – 20, 162, 578. Количество элементов – 16, 64, 256;

Tecm 7.14

Модель	Искомая величина, м	Теория	Результат	Отклонение, %				
			4x4	8x8	16x16	4x4	8x8	16x16
1	v _E	0.3086	-0.20193	-0.25820	-0.28790	34.57	16.33	6.71
*2	v _E	0.3086	-0.30457	-0.30089	-0.30058	1.31	2.50	2.60
3	v_E	0.3086	-0.27452	-0.29118	-0.29798	11.04	5.64	3.44
*4	v _E	0.3086	-0.30428	-0.30084	-0.30057	1.40	2.51	2.60
5	v _E	0.3086	-0.01380	-0.02459	-0.04429	95.53	92.03	85.65
*6	v _E	0.3086	-0.21109	-0.29569	-0.30655	-31.60	-4.18	-0.66
7	v _E	0.3086	-0.01908	-0.03763	-0.08013	-93.82	-87.81	-74.03
*8	v _E	0.3086	-0.31154	-0.30794	-0.30766	0.95	-0.21	-0.30

lira-soft.com +7 (499) 922-00-02

Реализация конечных элементов с узлами на сторонах в ПК ЛИРА 10.4

Евзеров И.Д.

д.т.н., науч. руководитель проекта ЛИРА 10

Колесников А.В.

технический директор «ЛИРА софт»

lira@lira-soft.com

Москва 2015