73. Определение расчетного сопротивления грунта

73. Определение расчетного сопротивления грунта
Автор: Вараксин Петр

Содержание:

  1. Когда и зачем необходим расчет?
  2. Как выполнить расчет сопротивления грунта в программе?
  3. Сравнение полученных результатов

В версии ЛИРА 10.12 стало возможным определять расчетное сопротивление основания грунта согласно нормативным документам. В этой заметке мы рассмотрим особенности выполнения такого расчета в программе, а также на примере сравним полученные результаты ручного расчета с расчетом из расчетного комплекса.

Когда и зачем необходим расчет?

Проектируя конструкцию фундаментов мелкого заложения, инженер сталкивается с необходимостью выполнения проверок ограничивающих появление чрезмерных осадок здания.

Некоторые методы расчета осадок имеют свои границы применения.

Так, выполняя расчет осадок, применяя схему в виде линейно деформируемого полупространства с уловным ограничением глубины сжимаемой толщи, необходимо соблюдать условие, по которому среднее давление под подошвой фундамента P не должно превышать расчетное сопротивление грунта основания R п.5.6.6 СП 22.13330.2016.

formula-1.png

Yc1 и Yc2 - коэффициенты условий работы, принимаемые по таблице 5.4;

k - коэффициент, принимаемый равным единице, если прочностные характеристики грунта ( φII и
сII ) определены непосредственными испытаниями, и

Mγ, Mq, Mс - коэффициенты, принимаемые по таблице 5.5;

kz - коэффициент, принимаемый равным единице при  formula-mini.png (здесь z0 =8 м);

b - ширина подошвы фундамента, м (при бетонной или щебеночной подготовке толщиной hn допускается увеличивать b на 2hn );

γII - осредненное (см. 5.6.10) расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод определяется с учетом взвешивающего действия воды), кН/м3;

γ`II - то же, для грунтов, залегающих выше подошвы фундамента, кН/м3;

cII- расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента (см. 5.6.10), кПа;

d1 - глубина заложения фундаментов, м, бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, вычисляемая по формуле (5.8). При плитных фундаментах за d1 принимают наименьшую глубину от подошвы плиты до уровня планировки;

formula-2.png

здесь hs - толщина слоя грунта выше подошвы фундамента со стороны подвала, м;

hcf - толщина конструкции пола подвала, м;

γcf - расчетное значение удельного веса конструкции пола подвала, кН/м3;

db - глубина подвала, расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом глубиной свыше 2 м принимают равным 2 м).

При бетонной или щебеночной подготовке толщиной hn допускается увеличивать d1 на hn.

Значение R в данном выражении совпадает с таким давлением под подошвой фундамента, при котором зоны пластических деформаций развиваются на глубину Z=b/4, что соответствует началу фазы образования областей сдвига. При превышении давления будет наблюдаться существенное развитие областей пластической деформации под краями фундамента, что нарушит изначально принятую линейную зависимость между напряжениями и деформациями.


img-1.png


Впервые данная формула появилась в нормативных документах в СНиП 2.02.01-83 и является выражением для расчетного сопротивления грунта выведенного из формулы Пузыревского-Герсеванова.


Как выполнить расчет сопротивления грунта в программе?

Для определения данных расчетного сопротивления в программе необходимо указать какие элементы будут входить в рассматриваемую группу. Данные элементы также должны иметь назначенное значение Pz в параметрах упругого основания.


img-2.png


Во вкладке «группы свай и фундаментов» следует ввести размеры здания и выделенного фундамента

img-3.png

Свойства грунтового основания определяются в расчете из вкладки «Редактор грунта»

img-4.png


img-5.jpg


Сравнение полученных результатов

В примере участвует столбчатый фундамент без подвала с однородным грунтом

formula-3-new-2.png

Результат ручного расчета

Результаты расчетного сопротивления отображаются как в модуле грунт для одного конечного элемента, так и для всех элементов входящих в группу плитного фундамента


img-6.png

img-7.png

Результаты расчета в ЛИРА 10.12

Значение расчетного сопротивления грунта можно сравнить с средним давлением Pср = 12 тс/м2 Pср ≤ Rz – условие выполняется

О некоторых особенностях ввода данных

  • Произведение длины и ширины указанного фундамента должно отличаться не более чем на 3% от реальной площади выделенных элементов
  • Если характеристики для расчета были взяты по таблицам норм (коэффициенты для расчета сопротивление грунта таблицы приложения А), то необходимо поставить соответствующую галочку, это влияет на значение коэффициента для грунта
  • При наличии подвала, следует внести соответствующие значения для определения приведенной глубины заложения фундаментов k
  • При наличии подвала, следует внести соответствующие значения для определения приведенной глубины заложения фундаментов d1
  • Коэффициенты γc2 для жесткой конструкции при промежуточных значениях определяются интерполяцией

Дополнительно при определении расчетного сопротивления в модуле ГРУНТ выполняется проверка слабо подстилающего слоя в пределах глубины сжимаемой толщи по пункту 5.6.25 СП 22.13330.2016.

formula-4.png

σZp, σZy, σZg - вертикальные напряжения в грунте на глубине z от подошвы фундамента (см. 5.6.31), кПа;

Rz - расчетное сопротивление грунта пониженной прочности, кПа, на глубине z, вычисленное по формуле (5.7) для условного фундамента шириной , м, равной:

formula-5.png

здесь N - вертикальная нагрузка на основание от фундамента, l и b - соответственно длина и ширина фундамента.


img-8.png


При возникновении ошибки расчета, связанных с пунктом 5.6.25 следует изменить исходные данные:

  • увеличить глубину заложения фундамента
  • повысить характеристики слоев грунта, залегающих в сжимаемой толще
  • уменьшить нагрузку Pz
  • изменить габариты фундамента
  • уменьшить минимальную глубину сжимаемой толщи

Список литературы

  1. Насонов С.Б. Руководство по проектированию и расчету строительных конструкций. В помощь проектировщику. – Москва, АСВ, 2017.
  2. Малышев М.В., Г.Г. Болдырев. Механика грунтов основания и фундаменты (в вопросах и ответах). – Москва, АСВ, 2004.
  3. СП 22.13330.2016 Основания зданий и сооружений. (с Изменением N 3)


Большой вебинар по возможностям ПК ЛИРА 10 с учетом нововведений версии 2024

В прямом эфире мы обсудим возможности программного комплекса ЛИРА 10 с учетом нововведений 2024 версии и ответим на все ваши вопросы.

28 августа 2024
Выход ПК ЛИРА 10 версия 2024
Встречайте обновление программного комплекса ЛИРА 10 – версия 2024 года!
14 августа 2024
Мы обновили релиз ПК ЛИРА 10 R2.2.
Мы обновили релиз ПК ЛИРА 10 R2.2.
10 июля 2024
Акция: приобретай ЛИРА 10 в июне по старой цене и получи обновление бесплатно
Мы активно заняты подготовкой к выпуску новой версии ЛИРА 10. Долгожданное обновление выйдет совсем скоро! А пока расскажем о некоторых нововведениях, которые ускорят и облегчат работу с программой. Следите за нашими новостями, чтобы не пропустить подробный обзор всех новинок 2024 года!
19 июня 2024
Все новости
Информационное моделирование и проектирование многоэтажного жилого здания с использованием российского программного обеспечения
Выполнено формирование информационной модели многоэтажного
жилого здания в BIM-системе Renga. Проведен экспорт модели и расчет конструктивной
системы здания в ПК Лира 10.12. Представлены результаты моделирования и
проектирования.
12 февраля 2024
Реализация модели контактного слоя при расчете адгезионного соединения с использованием метода конечных элементов
В большинстве опытов по испытанию адгезионных соединений измеряется средняя адгезионная прочность. Данная величина вычисляется как отношение разрушающей нагрузки к площади склейки. Подобный подход подразумевает равномерное распределение касательных напряжений. Исследователи давно обнаружили, что средняя адгезионная прочность соединения является сильной функцией геометрических [1] и физико-механических параметров модели и, следовательно, делает малоинформативными и несопоставимыми экспериментальные данные, выполненные на отличающихся образцах. Малочисленные результаты по измерению касательных напряжений по площади склейки с использованием преимущественно поляризационно-оптических методов [2] показывают, что распределение напряжений является нелинейной функцией. При этом наблюдается концентрация напряжений у торцов модели. В связи с этими фактами возникает необходимость детального изучения напряженно-деформированного состояния адгезионных соединений.
06 июня 2019
Оценка точности нелинейного статического метода анализа сейсмостойкости сооружений
В статье рассмотрено практическое применение методики нелинейного статического анализа сейсмостойкости зданий и сооружений. Произведен расчет одноэтажной стальной рамы нелинейным статическим и нелинейным динамическим методами. В результате анализа полученных результатов расчета показана значимость высших форм колебаний и необходимость анализа их влияния на реакцию системы.
06 февраля 2018
Напряженно-деформированное состояние коррозионно - поврежденных железобетонных элементов при динамическом нагружении
С помощью современного программно-вычислительного комплекса  ЛИРА 10.6 выполнена сравнительная оценка напряженно–деформированного состояния  не поврежденного и коррозионно-поврежденного железобетонного элемента при динамическом и статическом нагружении. Проанализировано   влияния ослабленного коррозией бетонного участка сжатой зоны на перераспределение напряжений в сечении.
25 января 2018
Все публикации
Большой вебинар по возможностям ПК ЛИРА 10 с учетом нововведений версии 2024

Присоединяйтесь к вебинару и откройте новые возможности работы в ПК ЛИРА 10 версии 2024!

22 августа 2024
BIM-Практикум 2023. ЧАСТЬ 12 «BIM-МОДЕЛИ КМ И КМД: РАСЧЕТ И АНАЛИЗ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ»
Покажем взаимодействие между ПК ЛИРА 10.12 при передаче данных в ПК Renga.
20 сентября 2023
Особенности работы в ПК ЛИРА 10.12 и ModelStudio CS при проектировании зданий промышленно-гражданского строительства
Участники вебинара узнают, как обмениваться данными и экономить время на создании расчетных моделей в ПК ЛИРА 10.12, используя уже существующие модели из ModelStudio CS.
04 сентября 2023
Разбор применения различных типов нагрузок в статических задачах
На вебинаре вы научитесь где и как правильно использовать тот или иной способ задания нагрузки. Будут рассмотрены полезные типы нагрузок, которые, возможно, вами никогда не использовались.
12 июля 2023
Все записи вебинаров