73. Определение расчетного сопротивления грунта

73. Определение расчетного сопротивления грунта
Автор: Вараксин Петр

Содержание:

  1. Когда и зачем необходим расчет?
  2. Как выполнить расчет сопротивления грунта в программе?
  3. Сравнение полученных результатов

В версии ЛИРА 10.12 стало возможным определять расчетное сопротивление основания грунта согласно нормативным документам. В этой заметке мы рассмотрим особенности выполнения такого расчета в программе, а также на примере сравним полученные результаты ручного расчета с расчетом из расчетного комплекса.

Когда и зачем необходим расчет?

Проектируя конструкцию фундаментов мелкого заложения, инженер сталкивается с необходимостью выполнения проверок ограничивающих появление чрезмерных осадок здания.

Некоторые методы расчета осадок имеют свои границы применения.

Так, выполняя расчет осадок, применяя схему в виде линейно деформируемого полупространства с уловным ограничением глубины сжимаемой толщи, необходимо соблюдать условие, по которому среднее давление под подошвой фундамента P не должно превышать расчетное сопротивление грунта основания R п.5.6.6 СП 22.13330.2016.

formula-1.png

Yc1 и Yc2 - коэффициенты условий работы, принимаемые по таблице 5.4;

k - коэффициент, принимаемый равным единице, если прочностные характеристики грунта ( φII и
сII ) определены непосредственными испытаниями, и

Mγ, Mq, Mс - коэффициенты, принимаемые по таблице 5.5;

kz - коэффициент, принимаемый равным единице при  formula-mini.png (здесь z0 =8 м);

b - ширина подошвы фундамента, м (при бетонной или щебеночной подготовке толщиной hn допускается увеличивать b на 2hn );

γII - осредненное (см. 5.6.10) расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод определяется с учетом взвешивающего действия воды), кН/м3;

γ`II - то же, для грунтов, залегающих выше подошвы фундамента, кН/м3;

cII- расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента (см. 5.6.10), кПа;

d1 - глубина заложения фундаментов, м, бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, вычисляемая по формуле (5.8). При плитных фундаментах за d1 принимают наименьшую глубину от подошвы плиты до уровня планировки;

formula-2.png

здесь hs - толщина слоя грунта выше подошвы фундамента со стороны подвала, м;

hcf - толщина конструкции пола подвала, м;

γcf - расчетное значение удельного веса конструкции пола подвала, кН/м3;

db - глубина подвала, расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом глубиной свыше 2 м принимают равным 2 м).

При бетонной или щебеночной подготовке толщиной hn допускается увеличивать d1 на hn.

Значение R в данном выражении совпадает с таким давлением под подошвой фундамента, при котором зоны пластических деформаций развиваются на глубину Z=b/4, что соответствует началу фазы образования областей сдвига. При превышении давления будет наблюдаться существенное развитие областей пластической деформации под краями фундамента, что нарушит изначально принятую линейную зависимость между напряжениями и деформациями.


img-1.png


Впервые данная формула появилась в нормативных документах в СНиП 2.02.01-83 и является выражением для расчетного сопротивления грунта выведенного из формулы Пузыревского-Герсеванова.


Как выполнить расчет сопротивления грунта в программе?

Для определения данных расчетного сопротивления в программе необходимо указать какие элементы будут входить в рассматриваемую группу. Данные элементы также должны иметь назначенное значение Pz в параметрах упругого основания.


img-2.png


Во вкладке «группы свай и фундаментов» следует ввести размеры здания и выделенного фундамента

img-3.png

Свойства грунтового основания определяются в расчете из вкладки «Редактор грунта»

img-4.png


img-5.jpg


Сравнение полученных результатов

В примере участвует столбчатый фундамент без подвала с однородным грунтом

formula-3-new-2.png

Результат ручного расчета

Результаты расчетного сопротивления отображаются как в модуле грунт для одного конечного элемента, так и для всех элементов входящих в группу плитного фундамента


img-6.png

img-7.png

Результаты расчета в ЛИРА 10.12

Значение расчетного сопротивления грунта можно сравнить с средним давлением Pср = 12 тс/м2 Pср ≤ Rz – условие выполняется

О некоторых особенностях ввода данных

  • Произведение длины и ширины указанного фундамента должно отличаться не более чем на 3% от реальной площади выделенных элементов
  • Если характеристики для расчета были взяты по таблицам норм (коэффициенты для расчета сопротивление грунта таблицы приложения А), то необходимо поставить соответствующую галочку, это влияет на значение коэффициента для грунта
  • При наличии подвала, следует внести соответствующие значения для определения приведенной глубины заложения фундаментов k
  • При наличии подвала, следует внести соответствующие значения для определения приведенной глубины заложения фундаментов d1
  • Коэффициенты γc2 для жесткой конструкции при промежуточных значениях определяются интерполяцией

Дополнительно при определении расчетного сопротивления в модуле ГРУНТ выполняется проверка слабо подстилающего слоя в пределах глубины сжимаемой толщи по пункту 5.6.25 СП 22.13330.2016.

formula-4.png

σZp, σZy, σZg - вертикальные напряжения в грунте на глубине z от подошвы фундамента (см. 5.6.31), кПа;

Rz - расчетное сопротивление грунта пониженной прочности, кПа, на глубине z, вычисленное по формуле (5.7) для условного фундамента шириной , м, равной:

formula-5.png

здесь N - вертикальная нагрузка на основание от фундамента, l и b - соответственно длина и ширина фундамента.


img-8.png


При возникновении ошибки расчета, связанных с пунктом 5.6.25 следует изменить исходные данные:

  • увеличить глубину заложения фундамента
  • повысить характеристики слоев грунта, залегающих в сжимаемой толще
  • уменьшить нагрузку Pz
  • изменить габариты фундамента
  • уменьшить минимальную глубину сжимаемой толщи

Список литературы

  1. Насонов С.Б. Руководство по проектированию и расчету строительных конструкций. В помощь проектировщику. – Москва, АСВ, 2017.
  2. Малышев М.В., Г.Г. Болдырев. Механика грунтов основания и фундаменты (в вопросах и ответах). – Москва, АСВ, 2004.
  3. СП 22.13330.2016 Основания зданий и сооружений. (с Изменением N 3)


ЛИРА софт на Russian BIM Days: Навигатор по устойчивым конструкциям
Присоединяйтесь к ЛИРА софт на серии вебинаров Russian BIM Days, организованных ИЕСОФТ совместно с Академией Осознанного Проектирования.
22 февраля 2024
ЛИРА софт на BuildingSkinRussia 2024: Практики моделирования фасадных систем
Алексей Колесников, технический директор ЛИРА софт, выступит 29 февраля в 13:30 на площадке Amber Plaza в рамках конференции «IT в архитектуре и строительстве. Вызовы 2024».
20 февраля 2024
Информационное моделирование и проектирование многоэтажного жилого здания с использованием российского программного обеспечения
Выполнено формирование информационной модели многоэтажного
жилого здания в BIM-системе Renga. Проведен экспорт модели и расчет конструктивной
системы здания в ПК Лира 10.12. Представлены результаты моделирования и
проектирования.
12 февраля 2024
Коллектив ЛИРА софт поздравляет вас с наступающим новым годом!
Мы хотим выразить признательность за наше партнерство в уходящем году. Ваш интерес и доверие к нашему продукту стали источниками неиссякаемой мотивации для нашей команды. Благодаря вам мы развиваемся и становимся лучше!
28 декабря 2023
Все новости
Информационное моделирование и проектирование многоэтажного жилого здания с использованием российского программного обеспечения
Выполнено формирование информационной модели многоэтажного
жилого здания в BIM-системе Renga. Проведен экспорт модели и расчет конструктивной
системы здания в ПК Лира 10.12. Представлены результаты моделирования и
проектирования.
12 февраля 2024
Реализация модели контактного слоя при расчете адгезионного соединения с использованием метода конечных элементов
В большинстве опытов по испытанию адгезионных соединений измеряется средняя адгезионная прочность. Данная величина вычисляется как отношение разрушающей нагрузки к площади склейки. Подобный подход подразумевает равномерное распределение касательных напряжений. Исследователи давно обнаружили, что средняя адгезионная прочность соединения является сильной функцией геометрических [1] и физико-механических параметров модели и, следовательно, делает малоинформативными и несопоставимыми экспериментальные данные, выполненные на отличающихся образцах. Малочисленные результаты по измерению касательных напряжений по площади склейки с использованием преимущественно поляризационно-оптических методов [2] показывают, что распределение напряжений является нелинейной функцией. При этом наблюдается концентрация напряжений у торцов модели. В связи с этими фактами возникает необходимость детального изучения напряженно-деформированного состояния адгезионных соединений.
06 июня 2019
Оценка точности нелинейного статического метода анализа сейсмостойкости сооружений
В статье рассмотрено практическое применение методики нелинейного статического анализа сейсмостойкости зданий и сооружений. Произведен расчет одноэтажной стальной рамы нелинейным статическим и нелинейным динамическим методами. В результате анализа полученных результатов расчета показана значимость высших форм колебаний и необходимость анализа их влияния на реакцию системы.
06 февраля 2018
Напряженно-деформированное состояние коррозионно - поврежденных железобетонных элементов при динамическом нагружении
С помощью современного программно-вычислительного комплекса  ЛИРА 10.6 выполнена сравнительная оценка напряженно–деформированного состояния  не поврежденного и коррозионно-поврежденного железобетонного элемента при динамическом и статическом нагружении. Проанализировано   влияния ослабленного коррозией бетонного участка сжатой зоны на перераспределение напряжений в сечении.
25 января 2018
Все публикации
BIM-Практикум 2023. ЧАСТЬ 12 «BIM-МОДЕЛИ КМ И КМД: РАСЧЕТ И АНАЛИЗ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ»
Покажем взаимодействие между ПК ЛИРА 10.12 при передаче данных в ПК Renga.
20 сентября 2023
Особенности работы в ПК ЛИРА 10.12 и ModelStudio CS при проектировании зданий промышленно-гражданского строительства
Участники вебинара узнают, как обмениваться данными и экономить время на создании расчетных моделей в ПК ЛИРА 10.12, используя уже существующие модели из ModelStudio CS.
04 сентября 2023
Разбор применения различных типов нагрузок в статических задачах
На вебинаре вы научитесь где и как правильно использовать тот или иной способ задания нагрузки. Будут рассмотрены полезные типы нагрузок, которые, возможно, вами никогда не использовались.
12 июля 2023
Разбор примеров из практики по расчету на сейсмические воздействия
Рассмотрим реальные примеры уже построенных или проектируемых объектов
22 марта 2023
Все записи вебинаров