Одной из непростых задач, с которыми сталкивается расчетчик и строитель – это ограждение котлована и усиление грунта анкерами. В ПК ЛИРА 10.4 есть возможности моделирования как процесса экскавации грунта с последующим поэтапным строительством, так и моделирования предварительного натяжения анкеров. Рассмотрим более подробно постановку задачи (рис. 1).
Рис.1 Схема конструкций ограждения котлована и нагрузок на многослойное основание
Задача решается в несколько этапов. На первом этапе моделируется грунт, затем устанавливается ограждение с последующей экскавацией грунта. В рассматриваемом примере экскавация грунта проходит в два этапа и сопровождается усилением грунта анкерами. Для моделирования предварительного натяжения анкеров в ПК ЛИРА 10.4 есть специальный КЭ 208 (рис.2):
Рис.2 Смена типа конечного элемента
Для предварительного натяжения анкеров при помощи КЭ208 необходимо создать дополнительную стадию нелинейного загружения, саму величину натяжения при этом необходимо задать при помощи специальной нагрузки «Натяжение/Домкрат» (рис.3):
Рис.3 Задание предварительного натяжения
Последней стадией нелинейной задачи является демонтаж оставшихся конечных элементов грунта (экскавация грунта). На рис.4 представлена анимация стадий монтажа/демонтажа конструкций.
Рис.4 Анимация стадий монтажа/демонтажа элементов расчетной схемы
Рассмотренная задача более подробно разбиралась в вебинаре, посвященному системе Монтаж. Стоит отметить, что грунт в данной задаче моделировался нелинейными КЭ с применением модели Мора-Кулона. Это позволило произвести расчет с учетом модуля деформации грунта по ветви вторичного нагружения (учет разгрузки модели грунта).
Прикрепляю файл задачи для ознакомления. Пишите вопросы в комментариях.
Выполнено формирование информационной модели многоэтажного жилого здания в BIM-системе Renga. Проведен экспорт модели и расчет конструктивной системы здания в ПК Лира 10.12. Представлены результаты моделирования и проектирования.
В большинстве опытов по испытанию адгезионных соединений измеряется средняя адгезионная прочность. Данная величина вычисляется как отношение разрушающей нагрузки к площади склейки. Подобный подход подразумевает равномерное распределение касательных напряжений. Исследователи давно обнаружили, что средняя адгезионная прочность соединения является сильной функцией геометрических [1] и физико-механических параметров модели и, следовательно, делает малоинформативными и несопоставимыми экспериментальные данные, выполненные на отличающихся образцах. Малочисленные результаты по измерению касательных напряжений по площади склейки с использованием преимущественно поляризационно-оптических методов [2] показывают, что распределение напряжений является нелинейной функцией. При этом наблюдается концентрация напряжений у торцов модели. В связи с этими фактами возникает необходимость детального изучения напряженно-деформированного состояния адгезионных соединений.
В статье рассмотрено практическое применение методики нелинейного статического анализа сейсмостойкости зданий и сооружений. Произведен расчет одноэтажной стальной рамы нелинейным статическим и нелинейным динамическим методами. В результате анализа полученных результатов расчета показана значимость высших форм колебаний и необходимость анализа их влияния на реакцию системы.
С помощью современного программно-вычислительного комплекса ЛИРА 10.6 выполнена сравнительная оценка напряженно–деформированного состояния не поврежденного и коррозионно-поврежденного железобетонного элемента при динамическом и статическом нагружении. Проанализировано влияния ослабленного коррозией бетонного участка сжатой зоны на перераспределение напряжений в сечении.
Участники вебинара узнают, как обмениваться данными и экономить время на создании расчетных моделей в ПК ЛИРА 10.12, используя уже существующие модели из ModelStudio CS.
На вебинаре вы научитесь где и как правильно использовать тот или иной способ задания нагрузки. Будут рассмотрены полезные типы нагрузок, которые, возможно, вами никогда не использовались.