11. Использование жестких вставок при моделировании конструкций в ПК ЛИРА 10.4, Рассмотрены несколько примеров использования жёстких вставок при создании КЭ-моделей
Помимо рассмотренной в предыдущей заметке проблемы учета тела колонны при расчете перекрытий, расчетчики часто сталкиваются с вопросами моделирования ребристых перекрытий и капителей.
Жесткие вставки используются, как правило, при нарушении соосности стыковки стержней в узле. Например, при моделировании двухступенчатой колонны (стык подкрановой и надкрановой части колоны), примыкание ригеля к колонне, моделирование ребристых плит и т.п. Рассмотрим на примерах, какие различия получаются при расчетах с учетом жестких вставок и без них.
1. Моделирование ребристого перекрытия
Для примера будем рассматривать две схемы с одинаковыми жесткостями, нагрузками, условиями закреплений, различия будут лишь в способе моделирования плит, усиленных балками (рис. 1). В первом варианте ось балки проходит через срединную поверхность плиты. Второй вариант смоделирован с помощью жестких вставок. Более подробно этот вопрос рассматривается в вебинаре из цикла уроков «Шпаргалки для конструктора». Урок 5 «Расчет ребристого перекрытия».
Рис. 1. Расчетные модели зданий. ПК ЛИРА 10.4
Для создания жестких вставок необходимо зайти в пункт меню Схема -> Назначить жесткие вставки. Панель управления жесткими вставками показана на рисунке 2.
Жесткие вставки ориентируются вдоль осей, глобальной и местной системы координат, по линейным направлениям X, Y, Z. При этом нагрузки, задаваемые на стержень с жесткими вставками, привязываются к началу гибкой части. Заданный шарнир располагается между жесткой вставкой и гибкой частью стержня. Усилия вычисляются только в гибкой части стержня, поэтому при проверке равновесия в узле, где присутствует такой стержень, следует производить перенос усилий из гибкой части стержня в узел, с учётом заданной нагрузки на жесткую вставку. Проанализируем результаты расчетов по подобранной арматуре в прекрытиях 1-го этажа зданий (рис. 3), слева армирование без жестких вставок, справа с их применением.
Данный вид жестких вставок позволяет успешно моделировать такие часто встречающиеся элементы строительных конструкций, как капители (рис. 6).
Рис. 6. Модель для сравнения расчета с учетом капителей и без. ПК ЛИРА 10.4
Результаты расчетов по 2-м различным схемам приведены на рисунках 7 и 8.
Рис. 7. Нижнее армирование As1y. ПК ЛИРА 10.4
Рис. 8. Верхнее армирование As2y. ПК ЛИРА 10.4
Как видно из рисунков, задание жестких вставок приводит к более верному распределению арматуры, т.е. нижнее армирование больше, чем в случае без капителей, а верхнее, напротив – меньше.
Кроме этого, в ПК ЛИРА 10.4 существует модуль Вариация моделей, который позволяет обобщить и проанализировать результаты нескольких расчетных схем, в том числе и с/без жестких вставок, подробнее в заметке и вебинаре.
Выполнено формирование информационной модели многоэтажного жилого здания в BIM-системе Renga. Проведен экспорт модели и расчет конструктивной системы здания в ПК Лира 10.12. Представлены результаты моделирования и проектирования.
В большинстве опытов по испытанию адгезионных соединений измеряется средняя адгезионная прочность. Данная величина вычисляется как отношение разрушающей нагрузки к площади склейки. Подобный подход подразумевает равномерное распределение касательных напряжений. Исследователи давно обнаружили, что средняя адгезионная прочность соединения является сильной функцией геометрических [1] и физико-механических параметров модели и, следовательно, делает малоинформативными и несопоставимыми экспериментальные данные, выполненные на отличающихся образцах. Малочисленные результаты по измерению касательных напряжений по площади склейки с использованием преимущественно поляризационно-оптических методов [2] показывают, что распределение напряжений является нелинейной функцией. При этом наблюдается концентрация напряжений у торцов модели. В связи с этими фактами возникает необходимость детального изучения напряженно-деформированного состояния адгезионных соединений.
В статье рассмотрено практическое применение методики нелинейного статического анализа сейсмостойкости зданий и сооружений. Произведен расчет одноэтажной стальной рамы нелинейным статическим и нелинейным динамическим методами. В результате анализа полученных результатов расчета показана значимость высших форм колебаний и необходимость анализа их влияния на реакцию системы.
С помощью современного программно-вычислительного комплекса ЛИРА 10.6 выполнена сравнительная оценка напряженно–деформированного состояния не поврежденного и коррозионно-поврежденного железобетонного элемента при динамическом и статическом нагружении. Проанализировано влияния ослабленного коррозией бетонного участка сжатой зоны на перераспределение напряжений в сечении.
Участники вебинара узнают, как обмениваться данными и экономить время на создании расчетных моделей в ПК ЛИРА 10.12, используя уже существующие модели из ModelStudio CS.
На вебинаре вы научитесь где и как правильно использовать тот или иной способ задания нагрузки. Будут рассмотрены полезные типы нагрузок, которые, возможно, вами никогда не использовались.