Современные технологии проектирования подразумевают работу не в одной программе, а во множестве различных программ, как графических, так и расчетных.
Команда разработчиков программного комплекса ЛИРА 10.4 пристально следит за всеми тенденциями в области проектирования и расчетов и развивает продукт, который призван помочь конструкторам сократить время работы над проектом, при этом сохранив и повысив достоверность расчетов. С высокой степенью точности реализована интеграция с рядом пакетов для расчета и проектирования строительных конструкций. ПК ЛИРА 10.4 можно связывать с программами расчета и проектирования путем передачи файлов. К поддерживаемым форматам относятся, например, IFC, DXF, IGS, NEU, 3DS и другие.
1. Экспорт из Tekla Structures в ПК ЛИРА 10.4
Разработчиками была проведена работа по интеграции программного комплекса ЛИРА и Tekla Structures версии 21 посредством формата IFC. Благодаря использованию в ЛИРА 10.4 архитектурных элементов, удается сохранить высокую степень идентичности при импорте из Tekla Structures. Аналитическая модель импортируется в виде архитектурных элементов, которые сохраняют возможность редактирования и последующего разбиения на конечные элементы, для дальнейшего анализа и внесения изменений в расчетную схему и, далее, в информационную модель в Tekla.
В ПК ЛИРА 10.4 передаются: расчетная схема (рис. 1, рис. 2), материал сопоставляется с базой данных.
Рис. 1. Аналитическая модель в Tekla Structures
Рис. 2. Модель импортированная в ПК ЛИРА 10.4
Сечения передаются следующим образом: сечения, которые есть в базе данных программного комплекса ЛИРА 10.4, сопоставляются в автоматическом режиме и назначаются элементам. В случае отсутствия профилей в базе данных ЛИРА 10.4, пользователю предоставляется возможность сопоставить профили вручную при помощи диалогового окна (рис. 3).
В этом окне пользователь может сопоставить сечения, при этом можно посмотреть журнал сопоставления, если пропустить шаг сопоставления, тогда элементы будут переданы только геометрией. Так же, если нет такого сечения в базе данных ПК ЛИРА 10.4, пользователь может назначить этому сечению параметрическое сечение. После первого сопоставления вручную, создается запись в файле, который можно перенести на другие рабочие машины. После этого, те сечения, которые сопоставили вручную, будут сопоставляться автоматически, но при условии, если файл сопоставления не будет удален или почищен. Также в самом файле можно поменять сопоставление профилей. Файл "Tekla_Comparison_SS" находится по следующему пути: C:\ProgramData\Lira Soft\Lira10.4\DataBase.
Железобетонные сечения из Tekla Structures передаются параметрически (рис. 4).
В результате расчета в расчетную схему в ПК ЛИРА 10.4 могут быть внесены изменения: геометрия, сечения, материалы, эти изменения данные в проект Tekla с помощью экспорта расчетной модели из ПК ЛИРА 10.4 в формат IFC.
Импорт модели в Tekla Structures осуществляется с помощью опорной модели, при этом, выдается отчет по сопоставлению сечений (рис. 5). Далее опорная модель преобразуется в родные тела Tekla (рис. 6).
Рис. 5. Выдача отчета по сопоставленным профилям при импорте модели в Tekla
Рис. 6. Импортированная модель в Tekla
Таким образом, взаимосвязь двух программных комплексов ЛИРА и Tekla реализованы на достаточно высоком уровне, что позволяет оптимизировать процесс проектирования и значительно сократить трудозатраты на этом этапе.
Подробнее о связке программ Tekla и ЛИРА вы можете посмотреть в записи вебинара.
Выполнено формирование информационной модели многоэтажного жилого здания в BIM-системе Renga. Проведен экспорт модели и расчет конструктивной системы здания в ПК Лира 10.12. Представлены результаты моделирования и проектирования.
В большинстве опытов по испытанию адгезионных соединений измеряется средняя адгезионная прочность. Данная величина вычисляется как отношение разрушающей нагрузки к площади склейки. Подобный подход подразумевает равномерное распределение касательных напряжений. Исследователи давно обнаружили, что средняя адгезионная прочность соединения является сильной функцией геометрических [1] и физико-механических параметров модели и, следовательно, делает малоинформативными и несопоставимыми экспериментальные данные, выполненные на отличающихся образцах. Малочисленные результаты по измерению касательных напряжений по площади склейки с использованием преимущественно поляризационно-оптических методов [2] показывают, что распределение напряжений является нелинейной функцией. При этом наблюдается концентрация напряжений у торцов модели. В связи с этими фактами возникает необходимость детального изучения напряженно-деформированного состояния адгезионных соединений.
В статье рассмотрено практическое применение методики нелинейного статического анализа сейсмостойкости зданий и сооружений. Произведен расчет одноэтажной стальной рамы нелинейным статическим и нелинейным динамическим методами. В результате анализа полученных результатов расчета показана значимость высших форм колебаний и необходимость анализа их влияния на реакцию системы.
С помощью современного программно-вычислительного комплекса ЛИРА 10.6 выполнена сравнительная оценка напряженно–деформированного состояния не поврежденного и коррозионно-поврежденного железобетонного элемента при динамическом и статическом нагружении. Проанализировано влияния ослабленного коррозией бетонного участка сжатой зоны на перераспределение напряжений в сечении.
Участники вебинара узнают, как обмениваться данными и экономить время на создании расчетных моделей в ПК ЛИРА 10.12, используя уже существующие модели из ModelStudio CS.
На вебинаре вы научитесь где и как правильно использовать тот или иной способ задания нагрузки. Будут рассмотрены полезные типы нагрузок, которые, возможно, вами никогда не использовались.